Hydrostatic (Pneumatic) Bulge Testing of Magnesium e-Form Plus (Batch-3) Sheets at 200 °C

Report Submitted to United States Automotive Materials Partnership (USAMP)

FADI Abu-Farha

FADI-AMT LLC

202 Hunslet Way, Simpsonville SC 29680

48 Brookfield Oaks Dr., Suite D, Greenville, SC 29607

Mobile: +1 (859) 489-2926

FADI@fadi-amt.com

29th October 2019

Materials and Tests

Designations

- One material was received; the material was given an internal FADI-AMT designation (these are designations used internally for: (1) consistency of labeling data files and test samples (2) to maintain privacy since we test/analyze many materials by many suppliers).
- Material label for the sheets provided by USAMP is:
 - > M12: Magnesium e-Form Plus Batch-3 (~1.18mm thick sheets)
- The material was provided in ~600x600mm square sheets
- * Test Label Format: $\mathbf{M} \alpha \beta(\gamma)$ -200C- $\zeta \psi$
- **M**: Magnesium Alloy
- α : Material number (12 in this case)
- : Test Type (BBT: Balanced Biaxial Tension Test)
- y : Test Approach (PB: Pneumatic Bulge Test)
- **200C**: Test Temperature
- : Orientation (TD)
- ψ : Test Repeat Number (1, 2, 3, ...)

Thickness Measurements

> Thickness measurements were taken at different locations across the provided blanks; the recorded measurements are shown below:

Thickness Measurements (mm) ▶	Thickness Measurements (mm)											
	1	2	3	4	5	6	7	8	9	10	Avg.	STD
M12 (Magnesium e-Form Plus Batch-3)	1.171	1.178	1.174	1.184	1.187	1.183	1.173	1.178	1.180	1.181	1.179	0.0051

Bulge Tests Performed

Overview

> The below table summarizes the sheets that were used to perform the bulge tests included in this report, and the type/number of samples tested successfully:

Materials Tested	Material Orientation	Sample Geometry	Tested Samples (Reported)	
M12 (Magnesium e-Form Plus Batch-3)	TD	6" Square blank	6 (5)	

Testing and Analysis Details

Pneumatic Bulge Testing

Setup and Approach

Die Inserts

One die insert was used here (K1.0) to induce balanced biaxial deformation in the tested material ∇

Digital Image Correlation

FADI-AMT Hydraulic Bulge Test Schematic

Pneumatic Bulge Testing

Setup and Approach

Setup:

The actual bulging setup used was inverted and a special mirror was used to enable monitoring the sample during deformation with a front-looking DIC system ▶

The entire bulging setup was housed within an environmental chamber to achieve homogeneous temperature distribution during testing at elevated temperatures \blacksquare

Experimental Details

Test and DIC System Parameters

Test Parameters and Conditions:

- * Test Setup: Custom pneumatic bulge setup fitted within an environmental chamber, and two cameras (for 3D DIC strain measurements).
- ❖ Test Sample Geometry: square @ ~153mm (clamped round Φ=~153mm).
- ❖ Deformed Gage Area [Bulge Cavity]: Φ=101.6mm.
- Testing was performed at 200 °C, at a quasi-static rate.
- ❖ All tests were performed by linearly increasing the gas pressure at a constant rate (~0.033 MPa/s); testing stops before rupture.
- Camera frame rate: fixed @5 fps.
- Six samples were tested; five tests were successful with good DIC data (good correlation at 200C).

Digital Image Correlation (DIC):

- All strain measurements were done based on DIC of recorded images.
- The GOM ARAMIS software was used for processing and post processing the images.
- Pixel resolution of the measurements: ~60 microns/pixel

Experimental Details

Other

Orientations ▶

Below is a schematic of the RD and TD orientations (for K1.0, there is no difference between the two):

Testing

Pressure Curves

DIC Analysis

DIC Analysis Parameters and Details

DIC Post-Processing Analysis:

- Surface strains were averaged over a ~10mm diameter circle close to the sample's failure point (maximum strains noted before rupture) within the apex of the formed dome.
- The strain path (minor -vs- major strains) was constructed accordingly.
- Stresses were computed per ISO-16808, and the corresponding stress/strain curve was constructed.

DIC Analysis

DIC Analysis Parameters and Details

DIC Post-Processing Analysis:

Due to the higher noise level in DIC measurements (as expected: high temperatures, glass of the environmental chamber, use of a mirror), an averaging algorithm based on the Hollomon model was used to smoothen the resulting "effective stress/strain" curve. The latter was done by taking the DIC data from 4+4 frames around the current DIC frame of analysis, in order to compute the parameters of the stress-pressure relationship.

Testing

Tested Samples

Rolling Direction

Test Results

Bulge Pressure vs Dome Height

Test Results

Bulge Stress/Strain Curves

Results

Sample DIC Video _ Sample-6 (1)

Balanced Biaxial

Tension Line

35

40

45

20

25

Minor Strains (Area Average) [%]

30

Strains

M12_BBT(PB)-200C-TD6 0.035 MPa/s

Attachments

Attachments to this report:

- > Excel files containing all the raw data and DIC extracted measurements (time, pressure, strains, stresses ...), as well as plots, for all the performed tests.
- Detailed DIC video (one DIC sample video per tested material showing the evolution of surface strains, effective stress/strain curve and the strain path during the test).

Other:

> NA

Thank you!